
1
American Institute of Aeronautics and Astronautics

AIAA-99-4340

USING ABSTRACTION TO CREATE A PORTABLE
OBJECT-ORIENTED SIMULATION

P. Sean Kenney and David W. Geyer

Unisys Corporation
NASA Langley Research Center

Mail Stop 169
Hampton, VA 23681

Abstract

A common problem faced in the design of an object-
oriented simulation is that there are many different
groups of end users of the simulation framework. Each
group invariably has a different computer platform on
which to run the simulation. In an attempt to satisfy all
of these different groups, a simulation framework
should be designed to be portable so that it can be op-
erated on as many different platforms as possible. The
purpose of this paper is to describe several designs that
isolate the framework from the platform dependent
services required by a simulation.*

Introduction

Like most complex applications, a flight simulation
framework requires a large amount of operating system
support to perform its tasks. POSIX, the Portable Op-
erating System Interface, is a standard intended to al-
low an application to move from one operating system
to another by simply recompiling it [1]. POSIX is an
evolving, growing standard that provides the same
interface to system calls on operating systems that
support the standard. There are three problems in-
volved with relying on POSIX to provide platform
independence:

Copyright � 1998 by the authors. Published by the
American Institute of Aeronautics and Astronautics,
Inc. with permission.

1) Many platforms do not have POSIX support.

2) Some platforms claim to have POSIX compliance
when they only support a minimal POSIX imple-
mentation.

3) For a given platform, there may be platform spe-
cific services that are not provided in POSIX that
could be taken advantage of by a simulation
framework.

Until POSIX support is universal and completely sup-
ported by most operating systems, another solution to
create portable a simulation framework is required.

To provide portability, an object-oriented simulation
framework must address three issues. First, the frame-
work must encapsulate the behaviors of operating sys-
tems and real-time environments by using abstraction
[2] to define interfaces for platform dependent func-
tions. Next, the framework cannot be coupled to any
simulation hardware. The framework should isolate
complex simulation models from the simulator hard-
ware interfaces. By de-coupling the framework from
the hardware, the framework can run on platforms
connected to different hardware devices or no hard-
ware devices at all. Finally, if a framework uses a
Graphical User Interface (GUI) as a means to control
the simulation during execution, the framework cannot
be coupled to the GUI. This provides the greatest
flexibility for the system as a whole.

The remainder of this paper will discuss each of these
issues and how they were dealt with in the Langley

2
American Institute of Aeronautics and Astronautics

Standard Real-Time Simulation in C++ (LaSRS++)
Application Framework. LaSRS++ provides a power-
ful object-oriented framework for dynamic vehicle
simulation in real-time [3]. The framework’s object-
oriented design makes the software extremely flexible,
easily maintainable, and provides a high degree of
reuse. The LaSRS++ framework currently supports
hard real-time simulation on the SGI Onyx and the
Convex C3800 platforms. The framework has also
been run in a soft real-time mode on SGIs running Irix,
Sun workstations running SunOS and Solaris, IBM
RS6000s running AIX, and IBM PCs running Linux
and Microsoft NT.

The abstractions presented in this paper are the prod-
uct of an iterative object-oriented design process. The
designs provide decoupled, unit-testable, and complete
interfaces to platform specific resources. The abstrac-
tions are intended to simplify the complexity of porting
a simulation framework to new platforms.

Platform Dependent Services

A large number of operating system services are used
by a simulation framework to perform real-time simu-
lation. A framework must address scheduling, timing,
data sharing, synchronization, I/O, and many other
problems. Operating system services provide solutions
to these problems but directly tie the framework to a
platform. A framework must use a design that isolates
operating system implementation details from the
framework. Such a design allows the framework to use
timers, schedulers, shared memory, semaphores, and
other operating system resources in a portable fashion.
LaSRS++ uses an elegant design employing the Ab-
stract Factory, Bridge, and Singleton design patterns to
completely isolate the framework from the implemen-
tation details required to use operating system ser-
vices [4].

The design will be described using two common oper-
ating system services, shared memory and semaphores.
Both of these services are commonly used in simula-
tion frameworks, and the required system calls differ
greatly from platform to platform.

Shared Memory

Most modern operating systems provide a means to
map memory into the memory spaces of two or more
processes at once thereby allowing the processes to
share data. This mapping is known as shared memory.
The system calls used to create and access a shared
memory segment vary from platform to platform. Us-
ing object-oriented techniques, it is possible to present
users on all platforms with a common interface to
shared memory but allow the actual low-level imple-
mentation to vary according to the platform being
used. This is accomplished by using several different
object-oriented design patterns. Design patterns de-
scribe simple and elegant solutions to specific prob-
lems in object-oriented software design.

Figure 1 uses the Unified Modeling Language (UML)
to show the class diagram for the shared memory inter-
face software.

Bridge Pattern

The Bridge pattern decouples an abstraction from its
implementation.2 This design uses the Bridge pattern
to isolate client code from the platform specific details
of a specific implementation. The approach is to have
clients use an abstraction object that forwards its pub-
lic member function class to a hidden platform specific
implementation object. The abstraction object uses the
implementation object through the pure polymorphic
interface defined by the abstract implementation base
class. In this case, a shared memory interface object
(SharedMemory) interacts with a platform specific
shared memory implementation object (SharedMem-
oryImpl) through a polymorphic interface. An appro-
priate concrete implementation class is defined for
each platform on which the simulation framework is
executed upon. The appropriate concrete implementa-
tion object for a given platform is selected at run-time.

Abstract Factory Pattern

The Abstract Factory pattern is used to create the cor-
rect instance of the platform specific shared memory
implementation object at run time. This creational pat-
tern provides an interface for creating families of re-
lated objects without specifying their concrete classes.
In this case, the family of related objects are the plat-

3
American Institute of Aeronautics and Astronautics

form specific implementation objects. The abstract
factory object (SharedMemoryImplFactory) contains
knowledge of the specific platform that is being used.
The constructor for the shared memory interface object
invokes the makeSharedMemoryImpl member function
of the abstract factory object. This member function
uses knowledge of the specific platform to return the
appropriate implementation object for the given plat-
form. This specific implementation object is stored as
a hidden attribute of the shared memory interface ob-
ject.

Singleton Pattern

The Singleton creational pattern is used whenever it is
necessary to ensure a class only has one instance, and
provide a global point of access to the single instance.
The shared memory interface class and the abstract
factory class are implemented as singletons to provide
a global point of access for creating and accessing a
shared memory space.

Design Advantages

This design has several advantages that address the
issues of portability and maintainability:

1. Client code is de-coupled from the platform spe-
cific shared memory implementation details. This
de-coupling allows changes in the shared memory
implementation classes to have no impact on the
client code; i.e., the client code does not need to
be recompiled if the implementation changes. By
coupling client code only to a common interface,
the client code becomes platform independent.
This allows client code to be portable to any plat-
form supported by the shared memory interface
class.

2. Only a single class needs to be written to support
a new platform. Adding support for a new plat-
form involves two steps:

(a) Write a new shared memory implementation
class that interfaces with the platform specific
shared memory routines

(b) Add to the Shared memory implementation
abstract factory the capability to create the
new shared memory implementation object

Figure 1 – Shared Memory Interface

Singleton
Bridge - Interface

Singleton
Abstract Factory

Bridge - Im plementation

Singleton
Bridge - Interface

Singleton
Abstract Factory

Bridge - Im plementation

SystemVSharedMemoryImpl

virtual void* all ocate()
virtual void deallocate()

Win32SharedMemoryImpl

vir tua l void* allocate()
vir tua l void deal locate()

Singleton
Bridge - Interface

Singleton
Abstract Factory

Bridge - Im plementation
SharedMemoryImpl

virtual void* allocate()
virtual void deallocate()

SharedMemory

void* allocate()
void deallocate()

1

0..1

1

0..1

0..1

1

0..1

1

SharedMemoryImplFactory
1

0..1

1

0..1

BSDSharedMemoryImpl

vir tual vo id* allocate()
vir tual vo id deal locate()

4
American Institute of Aeronautics and Astronautics

3. Creation of platform specific objects can be iso-
lated to a single abstract factory object. The
shared memory interface class only references the
abstract shared memory base class. All concrete
implementation details are confined to the imple-
mentation abstract factory.

4. The design is generic and can be applied to other
operating system services. The following section
describes how the design was applied to another
important operating system service - semaphores.

It is important to note that the concrete implementation
classes cannot usually be compiled on any platform
other than the one the class is intended. Makefile di-
rectives are the most common method of dealing with
this issue.

Semaphores

A semaphore is a synchronization object that maintains
a count between zero and a specified maximum value.

The count is decremented every time a thread or proc-
ess “acquires” the semaphore object and incremented
every time a thread or process “releases” the sema-
phore. When the count reaches zero, no more threads
or processes can successfully acquire the semaphore
and will not proceed until it can. Semaphores are use-
ful in controlling shared resources and synchronizing
multiple threads or processes.

Figure 2 shows the class diagram for the semaphore
interface software as implemented in LaSRS++. The
semaphore interface software design uses the same
patterns as found in the shared memory interface soft-
ware. The only difference is that the System V imple-
mentation class is an abstract class rather than a con-
crete class. Two new concrete classes derive from the
SystemVSemaphoreImpl class. These concrete classes
provide the implementation details for these two plat-
forms that are different among the two System V Unix
platforms.

Singleton
Bridge - Interface

Singleton
Abstract Factory

Bridge - Implementation

Singleton
Bridge - Interface

Singleton
Abstract Factory

Bridge - Implementation

SystemVSemaphoreImpl

virtual int acquire()
virtual int release()
virtual int getSemaphoreValue()

Win32SemaphoreImpl

virtual int acquire()
virtual int release()

Singleton
Bridge - Interface

Singleton
Abstract Factory

Bridge - Implementation
SemaphoreImpl

virtual int acquire()
virtual int release()

Semaphore

int acquire()
int release()

1

0..1

1

0..1

0..1

1

0..1

1

ScramnetImplFactory
1

0..1

1

0..1

BSDSem aphoreImpl

virtual int acquire()
virtual int release()

IrixSemaphore

virtual int getSemaphoreValue()

SolarisSemaphore

virtual int getSemaphoreValue()

Figure 2 – The Semaphore Interface

5
American Institute of Aeronautics and Astronautics

As described above, the design is very generic.
LaSRS++ employs the design to handle several other
operating system services.

The Hardware Abstraction

The hardware abstraction is composed of three main
components: drivers, interfaces, and builders [5]. The
drivers are the classes that actually transmit and re-
ceive data with the simulator hardware devices, the
interfaces are communication classes that pass data
between a simulation model and a driver, and the
builders construct all of the appropriate drivers and
interfaces as needed. Figure 3 demonstrates the rela-
tionships between the drivers, the interfaces, and the
simulation models.

Mediator Pattern

The Mediator design pattern keeps classes from refer-
ring to each other explicitly and encapsulates how the
set of classes interact.2 The strongest asset of the Me-
diator design pattern is that it completely decouples the
two classes from each other. It should be used when-
ever two classes are unrelated but need to communi-
cate with each other.

Drivers

The driver classes are the classes that actually transmit
and receive data with the simulator hardware devices.
They typically contain buffers to hold the data that is

transferred with the hardware and member functions to
access or modify the data buffers. In the above dia-
gram, the class AbcHardwareDriver defines the two
virtual functions declared in the abstract class Hard-
wareDriver. These virtual methods send and receive
data. The class also defines methods that access and
modify data transferred to and from the hardware. The
driver class therefore provides the abstract interface of
HardwareDriver and an interface specific to the “Abc”
hardware. The driver classes are an implementation of
the Bridge design pattern.

Interfaces

Interfaces are communication classes that pass data
between the driver and the simulation models. The
interface class also performs any manipulation of the
data before transferring the data to its destination. The
interface class is essentially a one way or two way data
pump between the driver and the simulation model. In
the illustration above, the AbcHardwareInterface is
given a reference† to the AbcHardwareDriver and the
XyzSimulationModel when it is instantiated. The class
would then use the two references to transfer data be-
tween the two classes when appropriate. The interfaces
are a variation of the Mediator design pattern.

† Unless stated otherwise, reference refers to both the
reference and pointer types in C++.

HardwareDriver

virtual sendData()
virtual receiveData()

Hard wareInterface

virtual transferDataFromDriver()
virtual transferDataToDriver()

SimulationModel

AbcHardwareDriver
data_received_from_hardware
data_to_send_to_hardware

virtual sendData()
virtual receiveData()
putDataToSend()
getDataReceived()

XyzSimulationModel

updateState()

AbcHardwareInterface
AbcHardwareDriver* driver
SimulationModel* model

virtual transferDataFromDriver()
virtual transferDataToDriver()

1 11 1

Figure 3 - Drivers, Interfaces, and Simulation Models

6
American Institute of Aeronautics and Astronautics

Builders

Builder classes construct all of the appropriate drivers
as requested by the user and construct all of the corre-
sponding interfaces required by the simulation models.
The builder classes provide an interface for creating
the driver and interface classes without other simula-
tion classes having knowledge of the particular con-
crete classes. The builder classes are implemented
using the Abstract Factory design pattern.

Design Advantages

The advantages of this design are:

1. The simulation models are completely decoupled
from the hardware driver classes. This allows the
models to be tested with or without simulator
hardware. The behavior of the simulation models
with different inputs can be fully tested offline al-
lowing comprehensive analysis of performance
without using valuable simulator hardware re-
sources. Once the performance of a model has
been validated, the hardware inputs/outputs can be
used to validate the model’s performance in the
simulation. This minimizes the validation required
of new models. The decoupled simulation models
also remain portable. A polymorphic class hierar-
chy allows different computation models to be in-
corporated into the simulation and use the existing
hardware interface class without modification.
The model classes may be exported to other sites
without requiring any modifications for use. A
model imported from another site can be
“wrapped” in a class that has the interface re-
quired by the existing hardware interface, thereby
quickly assimilating the new computational model
into the simulation.

2. Modifications to simulator hardware only require
a change to the driver class. Many hardware de-
vices receive major and minor modifications over
their lifetimes. Minor modifications are often
changes to software, buffer sizes, etc. and require
little or no change to the software used to commu-
nicate with the device. Major modifications may
require a significant change to the software used
to communicate with the device however. Because

the driver encapsulates all of the code involved
with direct hardware communication, the simula-
tion is completely isolated from the modifications.

3. The hardware driver classes can be unit tested.
Any modifications to a driver class can be tested
without the simulation model. A diagnostic pro-
gram can be written that uses the driver to com-
municate with the hardware. The diagnostic pro-
gram serves two functions. It can be used to test
any changes made to the driver program and it can
be used to verify the operation of the hardware
prior to use by the simulation. Software configura-
tion management eases the burden of testing the
new driver class by allowing the user to verify that
the hardware is operating correctly with a previous
version of the driver before testing the new ver-
sion. (This is usually not possible when the hard-
ware has been modified).

4. The driver and/or interface class may be used to
emulate the hardware. Often a simulation uses
real-world hardware like a flight management
computer to assist in research or testing. A soft-
ware emulation of a hardware device can be
placed in either the driver or interface class to al-
low the simulation to perform necessary commu-
nications with the emulated hardware when the
real hardware is unavailable. The hardware emula-
tion may also be modified to conduct research ex-
periments.

5. Changes to the models can not affect the commu-
nication between a driver and it’s respective
hardware. A modification to a simulation model
may result in bad data being transmitted to a
hardware device, but it can not cause a connection
loss or crash if the hardware interface class prop-
erly limits the data being sent to the hardware de-
vice.

6. The hardware interface classes are generally
very trivial. The classes simply use the accessor
and modifier methods of the driver class and the
simulation model to transmit data. Any calcula-
tions required when manipulating the data can eas-
ily be verified through testing.

7
American Institute of Aeronautics and Astronautics

7. The hardware interface classes can often be re-
used by different simulation models without modi-
fication. If the models share a common base class
and the hardware interface only uses a reference to
the base simulation model then no modification is
required for use with different simulation models.

8. Hardware driver and interface classes are only
used on platforms that support their use. If the
framework is run on a platform that has no support
for a particular hardware device, then the abstract
factory builder class will not attempt to create
these classes. The builder classes are the only
class dependent upon hardware driver and inter-
face classes. Because only the builder classes are
dependent on the hardware classes, the framework
is both maintainable and portable.

9. Only two classes need to be written to support a
new hardware device. Adding support for a new
hardware device involves three steps:

(a) Write a new hardware driver class that com-
municates with the new hardware device

(b) Write a new hardware interface class that
transfers data between the driver and the
simulation model as needed

(c) Add the new classes to the abstract factory
builder classes to create the new driver and
interface as needed.

GUI Isolation

Simulation frameworks often use GUIs to control
and/or monitor simulation states during execution. To
ensure portability and maintainability, a framework
cannot be coupled to the GUI. This provides the great-
est flexibility for the system as a whole.

Two designs are available that allow a GUI to control
a framework with minimal coupling. The first design
involves using a shared memory segment as a means to
allow the GUI access to simulation states [6]. This
method requires the framework to instantiate all ob-
jects that are manipulated by the GUI into shared
memory. The GUI can then attach to the shared mem-
ory segment and manipulate objects using their public
methods. The design has the drawback that it requires

framework classes to be instantiated into shared mem-
ory.

Another design involves creating a second thread to
create and manage a GUI [7]. In this design a frame-
work class must create and start the new thread. The
GUI is then able to monitor and/or control simulation
states because it shares the same memory as the simu-
lation framework. Due to the fact that many GUI tool-
kits are not thread-safe, the GUI must be designed to
only allow a single thread to execute function calls to
the GUI toolkit.

It should be noted that in both of these designs, the
framework is de-coupled from the GUI while the GUI
is directly coupled to the framework. All communica-
tion between the framework is unidirectional. The GUI
monitors and controls simulation states. The frame-
work is completely unaware of the presence of the
GUI.

Determining which GUI library or toolkit to use is
another difficult issue. Three options are available to a
framework designer:

1) Use the libraries that came with a plat-
form/operating system/compiler.

2) Use commercial or free libraries from other
sources.

3) Develop a library suite for each of the platforms
needed in house.

Each option has its advantages and disadvantages. Us-
ing the libraries commonly found on a platform is an
inexpensive solution but can limit portability. For
example, most UNIX platforms have native support for
X windows and ship with other graphical libraries like
Xt and Motif. If Motif is selected as the GUI library
for a framework, then the framework is limited only to
UNIX platforms that also support Motif.

Using commercial libraries or free libraries is an excel-
lent alternative to using the libraries shipped with a
platform. Problems may arise however in finding a
product that supports all off the target platforms. Sup-
port problems may also impact the development of
framework features. If errors are found in these prod-
ucts, development of new framework features or

8
American Institute of Aeronautics and Astronautics

framework corrections may not be possible until after
the vendor addresses the problem. Another problem
arises when the platform requires on operating system
upgrade and an operating system compatible library is
not available.

Developing a library in house provides a framework
staff with the greatest flexibility but has tremendous
resource requirements until the libraries are full im-
plemented.

The GUI toolkit used by LaSRS++ has undergone sev-
eral transitions since the framework was first created.
Originally the framework was only run only on UNIX
machines. The Motif library was used to develop a
GUI to control the simulation while it was executing.
The shared memory GUI design was used to allow the
GUI to monitor and control the framework. Because
Motif is not object-oriented, the GUI code base
quickly became extremely large and awkward to main-
tain. The Motif library was abandoned in favor of an
object-oriented toolkit called Amulet. The Amulet base
GUI also used the shared memory design. Amulet is a
GUI toolkit developed at Carnegie-Mellon University
and supports almost every flavor of UNIX, Microsoft
Windows, and even the Macintosh. The library was
also freely downloadable over the Internet. Unfortu-
nately DARPA funding of the Amulet project ended,
and the product is no longer being developed or sup-
ported by its creators. The loss of Amulet support was
a mixed blessing – a new toolkit was selected that re-
quired the GUI to be rewritten yet again. The new
toolkit provides a better object-oriented foundation
than Amulet and has better performance. Currently,
LaSRS++ uses the free GUI toolkit called gtk--, a
GNU software package. The library is also object-
oriented and supports most UNIX platforms, Microsoft
Windows, and the Macintosh. The LaSRS++ frame-
work was also modified to use the thread based GUI
design. Because of the framework is de-coupled from
the GUI, users have the option to run with either the
Amulet based GUI or the gtk-- based GUI. This dem-
onstrates the importance of framework/GUI isolation.
While the gtk-- based GUI was being developed, other
framework users where continued to use the older
GUI. This affords users the convenience of transition-
ing to the new GUI according to their timetable.

Conclusions

Design patterns were used to maximize code reuse
while encapsulating implementation details within plat-
form specific classes. The Bridge, Factory, and Single-
ton patterns were used extensively throughout the de-
sign to achieve a portable framework. The Factory
pattern allows the framework to know about abstract
classes and nothing about the subclasses that define the
platform specific operations. The pattern establishes an
interface for creating subclasses without requiring any
knowledge of the subclasses. The Bridge pattern de-
couples an abstraction from its implementation. This
allows the abstraction and implementation to vary in-
dependently. The pattern provides flexibility in that the
abstraction and implementation are in separate class
hierarchies. The Singleton pattern ensures only one
instance of a class exists and provides a global point of
access to it. Essentially, the above patterns allow the
entire body of code that composes a framework to be
unaware of which platform the framework is operating
on.

Because the hardware interface is abstracted away in a
manner that keeps the actual simulator hardware com-
munications hidden from the rest of the framework, the
framework is a robust, portable, and easy to maintain
simulation system. Continual reuse of the hardware
abstraction ensures that new hardware interfaces can
be easily added into the framework and that these in-
terfaces can be easily tested and debugged with or
without the hardware.

Isolation of the framework from the GUI provides the
greatest flexibility when moving the framework to dif-
ferent platforms. In selecting a GUI library for use
with a simulation framework, a designer must weigh
the pros and cons of the aforementioned options and
select the most appropriate solution for that particular
environment.

Although the designs presented in this paper were
originally designed to support flight simulation at
NASA Langley Research Center, the designs could be
used in any object-oriented framework to heighten
reuse, portability, and maintainability.

Bibliography

9
American Institute of Aeronautics and Astronautics

[1] Bill O. Gallmeister. POSIX.4 Programming For
The Real World. O’Reilly & Associates, Sebastpol,
California, 1995.

[2] Grady Booch. Object-Oriented Analysis and De-

sign. Benjamin/Cummings, Redwood City, Califor-
nia,1994.

[3] Richard A. Leslie, et al. LaSRS++ An Object-
Oriented Framework for Real-Time Simulation of
Aircraft. Paper Number AIAA-98-4529, August,
1998.

[4] Gamma E., Helm R., Johnson R., Vlissides J. De-

sign Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading,
Massachusetts, 1995.

[5] P. Sean Kenney, et al. Using Abstraction To Isolate

Hardware In An Object-Oriented Real-Time
Simulation, Paper Number AIAA-98-4533, Au-
gust, 1998.

[6] Michael Madden, et al. Constructing a Multiple-

Vehicle, Multiple-CPU Using Object-Oriented
C++. Paper Number AIAA-98-4530, August,
1998.

[7] David Geyer, et al. Managing Memory Spaces In

An Object-Oriented Real-Time Simulation, Paper
Number AIAA-98-4532, August, 1998.

[8] Bruce Eckel. Thinking in C++. Prentice-Hall,

Englewood Cliffs, New Jersey, 1995.

[9] Bjarne Stroustrup. The C++ Programming Lan-

guage. Addison-Wesley, Reading, Massachusetts,
third edition, 1997.

[10] John Lakos. Large-Scale C++ Software Design.

Addison-Wesley, Reading, Massachusetts, 1996.

[11] Robert C. Martin. Designing Object-Oriented

C++ Applications Using The Booch Method. Pren-
tice-Hall, Englewood Cliffs, 1995.

[12] Scott Meyers. Effective C++. Addison-Wesley,
Reading, Massachusetts, 1992.

[13] Scott Meyers. More Effective C++. Addison-

Wesley, Reading, Massachusetts, 1996.

[14] David R. Musser, Atul Saini. STL Tutorial and

Reference Guide. Addison-Wesley, Reading, Mas-
sachusetts, 1996.

[15] Terry Quatrani, Visual Modeling With Rational

Rose and UML, Addison Wesley, Reading, Mas-
sachusetts, 1998.

[16] Pierre-Alain Muller. Instant UML. Wrox Press

Ltd., 1997. ISBN 1-861000-87-1.

	AIAA-99-4340
	USING ABSTRACTION TO CREATE A PORTABLE OBJECT-ORIENTED SIMULATION
	
	
	Abstract

